Overview of APR3 Measurements During CPEX

Stephen L. Durden, Simone Tanelli, Ousmane Sy, Svetla Hristova-Veleva, Joe Turk

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

CPEX Science Team Meeting, June 2018, University of Utah
Airborne Precipitation Radar (APR-3) - Overview

- Dual-frequency operation with Ku-band (13.4 GHz) and Ka-band (35.6 GHz)
- W-band nadir and scanning capability but not used in CPEX
 - Measures reflectivity at co- and cross-polarizations, and Doppler
 - Range resolution is ~ 50 m
 - Range sampling 30 m
 - Horizontal resolution at surface (from 11 km altitude) is ~ 1 km
 - Maximum unambiguous velocity of \(\pm 27.5 \text{ m/s} \) Ku-band and \(\pm 10.5 \text{ m/s} \) Ka-band
Data Quality

• Reflectivity calibration is likely 1-2 dB
 – Based on 10-degree incidence sigma0 at Ku-band
 – Based on Mie scattering calculations in light rain at Ka-band
 – GPM DPR reflectivity ~1.5 dB higher
• LDR measurements are OK to near -20 dB; LDR lower than this is likely contaminated by system cross-polarization isolation
• Velocity is motion-corrected total Doppler, including particle fall speed
 • Used surface Doppler to estimate aircraft motion
 • Simple de-aliasing algorithm applied but some aliasing may be left over
All files are KUsKAs

“APR2 mode”, W-band is not available

No “hires” structure

Contents of
APR3-L2ZV_DC8_20170610203143_R2_KUsKAs.h5

• d = struct with fields:
 lores: [1×1 struct]
 params_KUKA: [1×1 struct]
 postEng_cal: [1×1 struct] – not needed by users

• d.params_KUKA = struct with fields:
 AntRetraceTime_s: 0.6000
 AntScanLeft_deg: -25
 AntScanRight_deg: 25
 AntScanTime_s: 1.2000
 CalVersion: 99
 Fixed_Ka_Pt: 0
 Ka_Port: 0
 Nbeams: 24
 Nbeams_data: 23
 Nbeams_noise: 1
 Nbin_per_ray: 550
 Npuls_avge: 250
 Nscan: 621
 PRF_Hz: 5000
 Range_Size_m: 30
 Rx_Aatten: 10
 Tx_Aatten: 20
 pulselen_us: 10
 range0_m: -810.0000
Contents of
APR3-L2ZV_DC8_20170610203143_R2_KUsKAs.h5 (II)

alt3D: [621×24×550 double]
alt_nav: [621×24 double]
beamnum: [621×24 double]
drift: [621×24 double]
gsp_mps: [621×24 double]
isurf: [621×24 double]
lat: [621×24 double]
lat3D: [621×24×550 double]
ldr14: [621×24×550 double]
ldr35: [621×24×550 double]
lon: [621×24 double]
lon3D: [621×24×550 double]
look_vector: [621×24×3 double]
look_vector_radar: [621×24×3 double]
path_vals: [621×24×15 double]
pitch: [621×24 double]
roll: [621×24 double]
scantime: [621×24 double]
sequence: [621×24 double]
surf_vals: [621×24×8 double]
surface_index: [621×24 double]
v_surf: [621×24 double]
v_surfdc8: [621×24 double]
vel14: [621×24×550 double]
vel14c: [621×24×550 double]
vel35: [621×24×550 double]
vel35c: [621×24×550 double]
zhh14: [621×24×550 double]
zhh35: [621×24×550 double]
Accessing Reflectivity

Get reflectivity from
\[d.\text{lores.zhh14(:,1:23,:)}\]
\[d.\text{lores.zhh35(:,1:23,:)}\]

Make images:
\[\text{pcolor(x,y,squeeze(z14(:,beam,:)))'}\]
\[\text{pcolor(x,y,squeeze(z35(:,beam,:)))'}\]

Using same beam in all scans causes surface to move due to aircraft turns
 • Can resample to Cartesian
 • Slices have constant surface range
APR3 Data Collection During CPEX

<table>
<thead>
<tr>
<th>#</th>
<th>Date</th>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2017, May 27</td>
<td>First local science flight; box pattern in central Gulf; clear air only</td>
</tr>
<tr>
<td>2</td>
<td>2017, May 29</td>
<td>Sampling of scattered convection in NW Caribbean; cells 1813, 1942-2000</td>
</tr>
<tr>
<td>3</td>
<td>2017, May 31</td>
<td>Multiple boxes over Atlantic, near Bahamas and north of Hispaniola; mostly clear but cells at 1936, 2120</td>
</tr>
<tr>
<td>4</td>
<td>2017, June 1</td>
<td>Convective system over eastern Gulf; multiple passes over convection; 25 minute data loss at Ka-band due to TWT amplifier breaker trip</td>
</tr>
<tr>
<td>5</td>
<td>2017, June 2</td>
<td>Extended E-W box over western and central Gulf; clear areas and some convective cells, e.g., 1750, 1928; decaying convection 1830-1900, 2100-2110</td>
</tr>
<tr>
<td>6</td>
<td>2017, June 6</td>
<td>Convection over eastern Gulf, especially near 1858, 1955-2115, 2105, 2140</td>
</tr>
<tr>
<td>7</td>
<td>2017, June 10</td>
<td>Boxes east of the Bahamas; stratiform with some convection on ascent 1840-1850, small cells in box 1925, 2004, 2035-2045, 2118, 2140, 2210-2216</td>
</tr>
<tr>
<td>8</td>
<td>2017, June 11</td>
<td>East west legs over convective system in central Gulf; isolated cells 1801, 1830, 1850; extensive precip on lines starting 1900, 1920, and N to S line starting 2005</td>
</tr>
<tr>
<td>9</td>
<td>2017, June 15</td>
<td>Caribbean, east of Yucatan, convection at times near 1920, 1940, 1953, 2011</td>
</tr>
</tbody>
</table>
APR3 Data Collection During CPEX (II)

<table>
<thead>
<tr>
<th>#</th>
<th>Date</th>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2017, June 16</td>
<td>Caribbean, boxes east of Yucatan; convection near times 1830-1940, 2050-2140</td>
</tr>
<tr>
<td>11</td>
<td>2017, June 17</td>
<td>Caribbean, boxes east of Yucatan; convective cells 1745, 1800-1815, 2044-2054, 2223; sampled convective system with box pattern between 1900 and 2030</td>
</tr>
<tr>
<td>12</td>
<td>2017, June 19</td>
<td>East west legs over north central and northeast Gulf, Tropical Storm Cindy; extensive precipitation 1700-1820, 1840-2005; numerous isolated cells to 2130, then more extensive areas to 2224</td>
</tr>
<tr>
<td>13</td>
<td>2017, June 20</td>
<td>Bow tie pattern in central Gulf; convective system 1742-1754, cells 1815-1820, very shallow convection 1923, extensive precip 2110-2150</td>
</tr>
<tr>
<td>14</td>
<td>2017, June 21</td>
<td>East west flight across Gulf; isolated cell 1842, 1942, 2028, 2107, 2124, 2158, 2240; stratiform/transitional 1925-1937</td>
</tr>
<tr>
<td>15</td>
<td>2017, June 23</td>
<td>Box pattern to east of Bahamas crossed isolated cells 1832, 1859, 1910, 1917; multiple lines over area with isolated cells 1912-1939</td>
</tr>
<tr>
<td>16</td>
<td>2017, June 24</td>
<td>Over and around Cuba; convection 1744, box pattern cells near 1829, isolated cells 1843-1944; mature cell near 2106, more cells 2112-2143</td>
</tr>
</tbody>
</table>
Example Case 1:
June 19 TS Cindy

High reflectivity at Ku-band

Strong attenuation at Ka-band

DC8 19Z-20Z
Example Case 1: June 19 TS Cindy (II)
Zoom in on Convection Near 1945

Doppler Ku-band; positive down
Terminal velocity not removed
Example Case 2: June 11

19Z-20Z

Ku

Ku Doppler

Ka
Example Case 2: June 11 (II) 20Z-21Z
Example Case 3: June 16 Box

updraft

Stratiform or decaying convection?
Summary

- No serious instrument problems over experiment
- Release version calibration appears consistent with previous APR3 Ku/Ka data
- Data format is HDF5, new starting with 2016 ORACLES data
- Release version has been through standard QC but may have some as yet undetected issues – please contact us with questions
- Numerous cases of good data in convection
 - We would like to identify cases with APR3 data in precipitation and DAWN winds in nearby clear areas
 - Example: June 16 box?