$\psi - \chi$ Interactions of Tropical Cyclone Cindy

Vasu Misra

Sweta Das (Ph. D. Student)

Dept. of Earth, Ocean and Atmospheric Science The Florida State University

Objectives

- Why do some convective systems organize to form tropical cyclones?
 - Examining tropical cyclone Cindy observed during CPEX 2017 through two WRF simulations with different configurations---one that verified better than the other.
 - Using the $\varphi \chi$ (stream function-velocity potential) interaction framework one can objectively analyze this formation.
- What is the impact of dropsonde/DAWN winds on organization of convection?
 - Through assimilation experiments (future)

Tropical Storm Cindy 20 - 23 June 2017 1010 1000 BEST TRACK KZC P-W Sat (TAFB) Sat (SAB) 990 ADT ⊞ • AMSU AC (sfc) Surface Analysis 980 6/19 6/20 6/22 6/23 6/21 6/24 6/25 Date (Month/Day)

Cindy was the only named tropical cyclone during CPEX field phase.

Had aircraft observations (both dropsondes and lidar) for 19th - 21st June, mostly covering its transitioning period.

Experiments:

- 1. Genesis of Cindy (0000UTC JUNE 17-0000UTC JUNE 19)
- Further Development of Cindy (0000UTC JUNE 19-0600UTC JUNE 21)

What is Psi-Chi interaction?

Horizontal wind vector and can be divided into two parts rotational (non-divergent) and divergent (irrotational) components. $\vec{V}_{_H} = \vec{V}_{_{\psi}} + \vec{V}_{_{\chi}}$

It should be noted that ψ (Psi) is the stream function and χ (Chi) is the velocity potential.

The energy exchange from divergent to rotational is known as Psi-Chi interactions. A domain averaged (overbars) :-

$$\frac{\partial}{\partial t}\overline{K_{\psi}} = \overline{f\nabla\psi\cdot\nabla\chi} + \overline{\nabla^{2}\psi\nabla\psi\cdot\nabla\chi} + \overline{\nabla^{2}\chi}\frac{|\nabla\psi|^{2}}{2} + \overline{\omega J}\left(\psi,\frac{\partial\chi}{\partial p}\right) + \overline{F_{\psi}}$$
Eqn. 1
$$\frac{\partial}{\partial t}\overline{K_{\chi}} = -\frac{\partial}{\partial t}\overline{APE} - \frac{\partial}{\partial t}\overline{K_{\chi}}$$

$$= -\overline{\chi}\overline{\nabla^{2}\phi} - \overline{f\nabla\psi\cdot\nabla\chi} - \overline{\nabla^{2}\psi(\nabla\psi\cdot\nabla\chi)}$$

$$-\overline{\frac{1}{2}}|\nabla\psi|^{2}\nabla^{2}\chi - \overline{\omega J}\left(\psi,\frac{\partial\chi}{\partial p}\right) + \overline{F_{\chi}}$$
Eqn. 2
$$\overline{\langle APE\cdot K_{\chi} \rangle} = -\overline{\chi}\overline{\nabla^{2}\phi} = \frac{\overline{R\omegaT}}{p}$$
Eqn. 3

The $\psi - \chi$ interaction

$$\begin{aligned} APE &= -\chi \nabla^2 \phi = \frac{R\omega T}{p} \\ \frac{\partial K_{\chi}}{\partial t} &= B_{\chi} - \chi \nabla^2 \phi - f \nabla \chi. \nabla \psi - \nabla^2 \psi \nabla \chi. \nabla \psi - \nabla^2 \chi \frac{\left(\nabla \psi\right)^2}{2} - \omega J(\psi, \frac{\partial \chi}{\partial p}) + F_{\chi} \end{aligned}$$

$$\begin{aligned} \frac{\partial K_{\psi}}{\partial t} &= B_{\varphi} + f \nabla \chi. \nabla \psi + \nabla^2 \psi \nabla \chi. \nabla \psi + \nabla^2 \chi \frac{\left(\nabla \psi\right)^2}{2} + \omega J(\psi, \frac{\partial \chi}{\partial p}) + F_{\psi} \end{aligned}$$

Overbars (area averages) removed for convenience!

Experiment details

- Initial and boundary conditions: NCEP GFS operational analysis (0.25^ox0.25^o)
- Boundary condition interval: 3 hours
- WRF: Single domain @5km grid spacing; two way nesting

Name	Initial condition	Physics	Duration of simulation
EXP1	00z17Jun	Full microphysics	48 hours
EXP2	00z17Jun	Warm rain	48 hours
EXP1A	006z19Jun	Full microphysics	48 hours
EXP2A (TBD)	006z19Jun	Warm rain	48 hours

Model physics for EXP1 and EXP2 0000UTC 17Jun- 0000UTC 19Jun

WRF OPTION	<u>EXP1</u>	EXP2
Microphysics	WSM 6-class graupel scheme	Kessler scheme
Longwave Radiation	RRTMG scheme	RRTMG scheme
Shortwave Radiation	RRTMG scheme	RRTMG scheme
Surface-Layer Option	MM5 Monin-Obukhov scheme	MM5 Monin-Obukhov scheme
Land-Surface option	Thermal diffusion scheme	Thermal diffusion scheme
Boundary-Layer Option	YSU scheme	YSU scheme
Cumulus Option	Kain-Fritsch (new Eta) scheme	Kain-Fritsch (new Eta) scheme

Differences in microphysics

Lin et al./WSM6

EXP2 microphysics

Warm rain process only

Intensity during pre-genesis period of TS Cindy

Rainfall verification (mm/hr) 0006UTC 17Jun - 0000UTC 19Jun

Rainfall verification (mm/hr) 0012UTC 19Jun - 0006UTC 21Jun

<u>f∇χ. ∇ψ + ∇² ψ ∇χ. ∇ψ@ 850hPa 0000UTC 17Jun - 0000UTC 19Jun (EXP1)</u>

100W 95W 90W 85W 80W 75W 70W100W 95W 90W

<u> $f \nabla \chi$. $\nabla \psi + \nabla^2 \psi \nabla \chi$. $\nabla \psi a$ 850hPa 0000UTC 17Jun - 0000UTC 19Jun (EXP2)</u>

$\overrightarrow{\nabla \chi}$. $\overrightarrow{\nabla \psi} = |\nabla \chi| |\nabla \psi| \cos\theta$ <u>0000UTC 17Jun - 0000UTC 19Jun (EXP1)</u>

100w 95w 90w 85w 80w 75w 70w100w 95w 90w

EXP1-EXP2

100W 95W 90W 85W 80W 75W 70W100W 95W 90W 85W 80W 75W 70V100W 95W 90W 85W 80W 75W 70W100W 95W 90W 85W 80W 75W 70W10

Conclusions

• Preliminary findings:

- EXP2 produced TS Cindy by 21 Jun 18Z contrary to observations and EXP1.
- The orientation of the $\overrightarrow{\nabla \chi}$ and $\overrightarrow{\nabla \psi}$ in EXP2 was more conducive (more parallel) for conversion from χ to ψ than in EXP1
- However the $|\nabla \chi|$ in EXP2 was less than in EXP1 suggesting that the covariance of ω and T was not as strong as in EXP1

Future direction

- Can assimilation of winds in EXP2 further improve its simulation through improved analysis of $\overrightarrow{\nabla \chi}$ at initial time?
- At what stage of assimilation of winds have more impact? 00Z17Jun or 06Z19Jun for tropical cyclone Cindy?