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Science Goals:

Most general goal: To understand how convection
initiates, self-organizes and grows upscale

— using airborne observations

* from the Ku/Ka-band Airborne Precipitation Radar
(APR-2)

e the 2-um Doppler Aerosol Wind (DAWN) lidar
— and model simulations.
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Science Goals:

Most general goal: To understand how convection
initiates, self-organizes and grows upscale

— using airborne observations
* from the Ku/Ka-band Airborne Precipitation Radar
(APR-2)
e the 2-um Doppler Aerosol Wind (DAWN) lidar
— and model simulations.

This investigation will provide insight to the

— role of the environmental 3-D wind,
thermodynamics, and aerosol loading, in modulating
the strength and size of the convectively-generated
cold pools

Hristova-Veleva, S. M., 2000: “Impact of microphysical parameterizations
on simulated storm evolution and remotely-sensed characteristics”, Ph.D.
Thesis Texas A&M University, pp 201, 2000, Available electronically from

http : / /hdl .handle .net /1969 .1 /152150.

Each of the six panels presents the surface temperature anomaly that corresponds to a particular model run that used the same thermodynamic and kinematic
environment but differed in the microphysical representation of the simulated storms, assuming smaller and smaller frozen and liquid particles (hydrometeors).
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Science Goals:

Most general goal: To understand how convection
initiates, self-organizes and grows upscale

— using airborne observations
* from the Ku/Ka-band Airborne Precipitation Radar
(APR-2)
e the 2-um Doppler Aerosol Wind (DAWN) lidar
— and model simulations.

This investigation will provide insight to the

— role of the environmental 3-D wind,
thermodynamics, and aerosol loading, in modulating
the strength and size of the convectively-generated
cold pools

— and the role of such cold pools in the upscale growth
and the evolution of tropical convection.

Hristova-Veleva, S. M., 2000: "Impact of microphysical parameterizations
on simulated storm evolution and remotely-sensed characteristics”, Ph.D.
Thesis Texas A&M University, pp 201, 2000, Available electronically from
http : / /hdl .handle .net /1969 .1 /152150.

Each of the six panels presents the reflectivity that corresponds to a particular model run that used the same thermodynamic and kinematic environment
but differed in the microphysical representation of the simulated storms, assuming smaller and smaller frozen and liquid particles (hydrometeors).


http://hdl.handle.net/1969.1/152150

Science objectives and approach

 Observations
« provide critical information to evaluate and validate the models
* alone cannot provide full understanding of the multi-scale interactions

* Models provide significant insights on processes and interactions ... but only when their
forecasts are realistic

 Proposed way: Use observations to inform and validate models
* Assimilate DAWN winds

 Compare to observations
e Airborne: compare model cloud field structure and vertical velocity with the APR-2 observations
* Satellite:

* GPM overpasses (DPR and GMI) - a coarser resolution but wider-swath depiction of the convective organization
* Ocean wind vectors from ASCAT, SMAP winds, and ScatSat
* Thermodynamics from AIRS, CrlS, IASI

* If realistic, then analyze the model fields to understand the relationship between

* the 3D winds, the thermodynamic structure of the environment and the strength and size of the
convectively-generated cold pools

* the precipitation driven cold pools and the convective cloud organization and evolution



Understanding the impact of the DAWN winds

1.To quantify the impact of the DAWN measurements on the analyzed variables when
we assimilate the DAWN observations into the model

2.To quantitatively assess the capability that DAWN observations bring to the
representation of the wind and cloud field structure and variability.

3.To aid in assessing future requirements and limitations on the

a) scale (horizontal and vertical) of the observations needed for a space-based DWL
capability.

b) The outcome of this study will be the resolutions required for such an instrument
to resolve various scales of convective processes.



From the proposal: (P1J. F. Turk, Co-Is S. Hristova-Veleva, S. Zhang) focus of this presentation
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What observations do we need ..

Observations of of the environment — the area just outside the storm
Followed up by observations of the convection in the “box”
Repeated to see the development

Followed up by the observations of the system by satellites
* Precipitation: GPM-core, AMSR, SSMIS

* Thermodynamics: AISR, CrlS, IASI

e Surface winds: Scatterometers (ASCAT, ScatSat), SMAP

e SST



Almost perfectly executed on June 101!l  Thank you Ed for pointing us to this case!
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A view from the window
Between 21:45 and 22:05
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The CPEX control simulation: June 10th case ( Flight sampling period: 19z to 22z)

Model

* Resolution: horizontal 9KM( domain 1), 3KM (domain 2), vertical 55 levels. time step 45sec (d01), 15sec( d02)
e physics: Thompson 6 class microphysics, Grell 3D ensemble cumulus scheme

* lateral boundary condition and forcing: NCEP GDAS

Pre-flight, | hour before precipitation formation (142
+ experiment period: 20170610 00Z -- 20170611 00Z including spin-up & precip (14Z)

Inner domain : precipitation (contour); 2m temperature (shaded]
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Processes specific for DAWNv3
observations:

Observation error standard DAWN DATA

deviation specified as 1 (m/s) at the
sampling time centered at analysis
time. Observation error standard
deviation increases corresponding tc
the length of sampling time away
from analysis time.

QC: Observations within statistical

DAWNvV3 wind profiles (pre-processed to U V)
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The CPEX data assimilation experiments using NASA Unified WRF Ensemble Data Assimilation
System (NU-WRF EDAS)

June 10t case ( Flight sampling period: 19z to 222)

Analysis

e Algorithm: ensemble maximum likelihood filter
e Control variables: wind, temperature, specific humidity, surface pressure, clouds and precipitation ( liquid and frozen

phase)

e Assimilation window: 1 hour

* Ensemble size: 48

e Background error covariance: flow-dependent, estimated from ensemble forecasts
* Observation types assimilated: NCEP conventional observations, DAWNv3 wind profiles
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Impact on the precipitation:
(zoom-in to the flight area in inner domain, flight path in black line )

Impact of DAWN assimilation

ASSIm Contr Precipitation mm/h

Impact on the wind

* RMSE (b) - the departure of first guess and observation
* RMSE (a) - the departure of analysis and observation

* Num. obs. - only these accepted by the QC

* Norm. Jo is the least square departures normalized by
observation error covariance and observation counts (

before / after minimization)

3.10 2.85 11978 4.78/4.08
20z 3.43 3.27 9464  5.86/5.37

21z 3.41 3.15 4550 5.82/4.99
227 3.64 3.44 10504 6.62/5.94




So ... What happened after the assimilation at 197
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Impact due to DAWN DA at 197
* 2m temperature anomaly (shaded)
* precipitation (contour in red)
wind at 6000m level (vector)
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20170610 IMERG precip rate at 20:00 Z, Flight track & Dropsonde loc.
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Conceptual model of outflow trajectories from a
mesovortex and its affect on cold pool structure and
forcing of secondary convection. The conceptual model
was developed based on dual-Doppler analysis of an
observed midlatitude squall line (Hristova-Veleva, 1994).

Front-view (a) and side-view (b) of the storm-relative flow,
illustrating how the mesosvale flow organizes the
convective outflow, affecting the location, strengths and

organization of the convective cores.
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Summary

Assimilation of the DAWN winds in NU-WRF EDAS, even at a single time step, produced a very significant impact.

It resulted in modification of the near surface

e Convergence - increased

ﬂ_'l-" i "‘f

* Temperature — increased

e Water Vapor - increased

]

After the assimilation, the subsequent forecast produced

e precipitation where there was none,

* more organized precipitation where there was some

* a much more intense and organized cold pool

Comparison:

* to satellite observations shows a much improved
forecast after the assimilation of the DAWN winds

* Next: comparison to APR2 observations to study the
characteristics of the simulated and observed
precipitation in terms of statistics of the reflectivity,
the size and intensity of the cells.
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What is next?

* Analyze the model simulation before and after the DA to understand the relationship between

* the 3D winds, the thermodynamic structure of the environment and the strength and size of the convectively-
generated cold pools

* the precipitation driven cold pools and the convective cloud organization and evolution

* Analyze the flow-dependent background error covariance at 19Z to see
e the magnitudes of control variable error standard deviation and

* where were the areas in which the forecast uncertainties are most significant — where was the sensitivity to
potential correction by assimilating observations.

* these analyses would be important to understand the generality of the our results — were we very lucky this time
or whether assimilating DAWN-type winds of the same quality would always be very beneficial.

* Develop an OSSE experiment (based on this case) to see the importance of:

* Location of the observations with respect to the storm — would we get the same great result if we observed a
similar type of a good DAWN cross-section (like the 18:30-19:30 one) but placed elsewhere in the domain — further
in front of the system, further back, further north, earlier or later in time, etc.

* Completeness of the vertical profile —i.e. being able to sense the entire profile, all the way to the surface, versus
capturing only mid-to-upper level winds

* Horizontal and vertical resolution of the DAWN winds
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